IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury.
نویسندگان
چکیده
Platelet-derived growth factor (PDGF) stimulates vascular smooth muscle cell (VSMC) migration and neointimal formation in response to injury. We previously identified IQ-domain GTPase-activating protein 1 (IQGAP1) as a novel VEGF receptor 2 binding scaffold protein involved in endothelial migration. However, its role in VSMC migration and neointimal formation in vivo is unknown. Here we show that PDGF stimulation rapidly promotes IQGAP1 association with PDGF receptor-β (PDGFR) as well as IQGAP1 tyrosine phosphorylation in cultured VSMC. Overexpression or knockdown of IQGAP1 enhances or inhibits PDGFR autophosphorylation (p-PDGFR), respectively. Immunofluorescence and cell fractionation analysis reveals that PDGF-induced p-PDGFR localized in focal adhesions (FAs), but not caveolae/lipid rafts, is inhibited by IQGAP1 knockdown with siRNA. PDGF stimulation promotes IQGAP1 association with PDGFR/FA signaling protein complex. Functionally, IQGAP1 siRNA inhibits PDGF-induced FA formation as well as VSMC migration induced by PDGF. In vivo, IQGAP1 expression is markedly increased at neointimal VSMC in wire-injured femoral arteries. Mice lacking IQGAP1 exhibit impaired neointimal formation in response to vascular injury. In summary, IQGAP1, through interaction with PDGFR and FA signaling proteins, promotes activation of PDGFR in FAs as well as FA formation, which may contribute to VSMC migration and neointimal formation after injury. Our findings provide insight into IQGAP1 as a potential therapeutic target for vascular migration-related diseases.
منابع مشابه
Increasing our IQ of vascular smooth muscle cell migration with IQGAP1. Focus on "IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury".
VASCULAR DISEASE contributes to the mortality of multiple diseases including myocardial infarction, stroke, renal failure, and peripheral vascular disease. The etiology of many vascular diseases originates with endothelial and inflammatory cells that synthesize growth and chemotactic factors. As part of the response to injury hypothesis (9), vascular smooth muscle cells (VSMCs) respond to many ...
متن کاملTargeted disruption of the prostaglandin E2 E-prostanoid 2 receptor exacerbates vascular neointimal formation in mice.
OBJECTIVE Restenosis after angioplasty remains a major clinical problem. Prostaglandin E(2) (PGE(2)) plays an important role in vascular homeostasis. The PGE(2) receptor E-prostanoid 2 (EP2) is involved in the proliferation and migration of various cell types. We aimed to determine the role of EP2 in the pathogenesis of neointimal formation after vascular injury. METHODS AND RESULTS Wire-medi...
متن کاملXBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling.
OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 e...
متن کاملIntegrative Physiology and Experimental Medicine Targeted Disruption of the Prostaglandin E2 E-Prostanoid 2 Receptor Exacerbates Vascular Neointimal Formation in Mice
Objective—Restenosis after angioplasty remains a major clinical problem. Prostaglandin E 2 (PGE 2) plays an important role in vascular homeostasis. The PGE 2 receptor E-prostanoid 2 (EP2) is involved in the proliferation and migration of various cell types. We aimed to determine the role of EP2 in the pathogenesis of neointimal formation after vascular injury. Methods and Results—Wire-mediated ...
متن کاملUnexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.
RATIONALE Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 305 6 شماره
صفحات -
تاریخ انتشار 2013